Antibiotic Resistance

Current predictions are that accelerating development of antimicrobial resistance by bacterial pathogens will have dire consequences for human morbidity and mortality. There is thus an urgent need for a comprehensive and global strategy to forestall resistance development, and maintain the future efficacy of clinically important medicines. Action must include steps to promote the judicious use of antimicrobial agents in human medicine and in animal production. Gathering evidence indicates that genes conferring antimicrobial resistance can be recruited from environmental microorganisms by human pathogens, and that environmental exposure to drug residues and antimicrobial resistance genes carried in agricultural wastes and effluents from municipal wastewater treatment plants potentiates the environmental reservoir of antimicrobial resistance. This presentation will present evidence that human interaction with the environment is contributing to the development of this seminal public health problem, strategies by which this impact could be managed, and key knowledge gaps.

Distinguished Guest Lecture and Roundtable Discussion

9:30 a.m. Thursday October 29, 2015
Room 106, Kellogg Center

Lecturer
Dr. Edward Topp
Research Scientist, Agriculture and Agri-Food Canada
“The environmental dimension of antimicrobial resistance: How important is it, and what to do about it?”

Panelists
Dr. Hui Li, Associate Professor, Plant, Soil & Microbial Sciences
Dr. Bo Norby, Associate Professor, Veterinary Medicine
Dr. Syed Hashsham, Professor of Civil & Environmental Engineering
Dr. Shannon Manning, Associate Professor, Microbiology and Molecular Genetics.
Organized and hosted by Dr. Wei Zhang, ESPP/Plant, Soil and Microbial Sciences